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Abstract. A recent approach to compressed sensing using deterministic sensing matrices formed from discrete
frequency-modulated chirps or from Reed–Muller codes is extended to support efficient deterministic
reconstruction of signals that are much less sparse than envisioned in the original work. In particular,
this allows the application of this approach in imaging. The reconstruction algorithm developed for
images incorporates several new elements to improve computational complexity and reconstruction
fidelity in this application regime.
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1. Introduction. In the few years since the foundational ideas of compressed sensing were
set forth by Donoho [19] and Candès and Tao [15, 11], the methodology has inspired a substan-
tial body of research seeking to exploit sparsity in various classes of signals to enable efficient
measurement approaches [27, 32, 33]. While most of the emphasis has been connected with
the use of stochastic measurement matrices, a few researchers have sought to develop deter-
ministic measurement strategies. Among these is an approach introduced by Applebaum et
al. [2] and extended by Howard, Calderbank, and Searle [25] in which the columns of the mea-
surement matrix consist of sampled linear frequency-modulated chirps or the closely related
second-order Reed–Muller codes. This approach includes a deterministic algorithm for recon-
structing the original sparse signal from measurements that is shown to compare favorably to
reconstruction methods used in other compressed sensing contexts, particularly so when the
signal is extremely sparse. The performance of this algorithm deteriorates significantly, both
in speed and fidelity, when the signal is less sparse. In most image processing applications,
intrinsic compressibility of classes of images using a suitable basis (e.g., wavelets) typically
makes high-accuracy approximation by a sparse image possible only if the sparsity is 5–20%
or higher. Thus, the reconstruction algorithm for chirp compressed sensing given in [2] and
the closely related algorithm for Reed–Muller compressed sensing given in [25] are not suitable
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Table 1
Notation used throughout this paper.

N dimension of the signal space

x signal N-vector

k sparsity of x

n # of measurements

Φ n×N measurement matrix

j matrix column index

� matrix row index

y n-vector of measurements

A n× t matrix formed from columns of Φ, 0 ≤ t ≤ k

z vector of length t

for use with images. The primary contribution of this paper is to describe and demonstrate
a reconstruction algorithm that extends the utility of compressed sensing with chirp and
Reed–Muller measurement matrices into a regime of less sparsity, thereby supporting imaging
applications.

Following this introductory section, the paper continues in section 2 with a synopsis of
background material, focusing on the use of chirps and Reed–Muller codes in compressed sens-
ing. Background and notation used throughout the remainder of the paper are introduced in
the course of this synopsis. Section 3 is the heart of the paper. It begins by explaining the
shortcomings of the reconstruction algorithms of [2] and [25] that manifest when the signal
is not highly sparse. It then proceeds to describe the approach taken to extend compressed
sensing with chirps and Reed–Muller codes to support imaging. Appropriate construction of
the sensing matrix, with attention to satisfaction of the statistical restricted isometry prop-
erty (StRIP) [8], is addressed in this section along with a description of the corresponding
reconstruction algorithms for both chirp and Reed–Muller measurement matrices. In fact,
three variants of the basic algorithms that incorporate various techniques for numerical im-
plementation of the key steps are presented. Section 4 provides analytical and experimental
results pertaining to the performance of the method. The paper concludes in section 5 with a
brief discussion of the work presented and some thoughts regarding future directions for this
vein of research.

2. Background. The essential elements of compressed sensing are rather well documented
in recent research literature. The papers by Baraniuk [3] and Candès and Wakin [16], for ex-
ample, present clear synopses of the basics. Consequently, this section provides only a concise
description of the general compressed sensing problem to establish notation, and then presents
enough background on the deterministic approaches of [2] and [25] to enable subsequent anal-
ysis of their shortcomings in imaging applications.

Table 1 summarizes notation used throughout the remainder of this paper.

2.1. Compressed sensing. A signal x ∈ C
N is k-sparse in a basis Ψ = {ψj}Nj=1 if x is a

weighted superposition of at most k elements of Ψ. Compressed sensing broadly refers to the
inverse problem of reconstructing such a signal x from linear measurements {y� = 〈x, φ�〉|� =
1, . . . n} with n < N , ideally with n� N . Denoting by Ψ the N ×N matrix having the basis
elements ψj as its columns and by Φ the n×N matrix having the measurement vectors φ� as
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its rows yields

(2.1) y = Φx = ΦΨs.

In this expression, y is an n-vector of measurements and s is an N -vector in which at most
k components are nonzero. If Ψ is known, then reconstructing x from y is equivalent to
reconstructing s from measurements ΦΨs. For this reason, it is common to simplify notation
by assuming Ψ is the standard basis and x itself contains no more than k nonzero components.
Except in a few places where the sparsifying basis Ψ is explicitly needed, this assumption will
be used throughout the rest of this paper.

Much of the compressed sensing literature is concerned with conditions on the measure-
ment matrix Φ under which the k-sparse assumption on x regularizes, either with certainty or
very high probability, the ill-posed problem of recovering it from y. An important sufficient
condition in this regard is the restricted isometry property (RIP) [13], which stipulates that,
for some ε > 0,

(2.2) (1− ε)‖x‖22 � ‖Φsubx‖22 � (1 + ε)‖x‖22 ∀x ∈ C
k

must hold for every n×k matrix Φsub formed from k distinct columns of Φ. In this expression,
‖ · ‖2 denotes the �2-norm, defined by ‖x‖2 := (

∑N
i=1 |xi|2)1/2. While verifying the RIP for a

given measurement matrix Φ is combinatorially complex, it has been established that certain
classes of randomly generated matrices (e.g., whose entries are realized from independent
Gaussian random variables) manifest the RIP with very high probability. One should note
that (2.2) is equivalent to the following relation [15] between the minimum and maximum
eigenvalues of the Grammian Φ∗

subΦsub:

1− ε ≤ λmin(Φ
∗
subΦsub) ≤ λmax(Φ

∗
subΦsub) ≤ 1 + ε.

As noted above, the use of randomly generated matrices has become prevalent in com-
pressed sensing. For a Gaussian measurement matrix, reconstruction of x from y is generally
possible if n > ck log(N/k) [15, 13, 3], with reconstruction entailing a convex �1 optimization
problem, such as

(2.3) min ‖x̃‖1 such that y = Φx̃ ,

where ‖x̃‖1 =
∑N

i=1 |x̃i|. Algorithms to efficiently solve such problems have received much re-
cent attention specifically in connection with their utility in compressed sensing [21, 34, 22, 5].
The popular basis pursuit algorithm [14] has computational complexity O(N3); alternatives
to basis pursuit (e.g., greedy matching pursuit) also have computational complexities that
depend on N .

2.2. Statistical RIP. In [8], Calderbank, Howard, and Jafarpour set forth criteria on Φ
that ensure a high probability that the mapping taking the k-sparse signal vector x to the
measurement vector y is injective, assuming a specific probability distribution on the unit-
magnitude k-sparse vectors in C

N . They say that Φ has the StRIP with respect to parameters
ε and δ if

(2.4) (1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22
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holds with probability exceeding 1− δ when x is assumed to be uniformly distributed among
k-sparse vectors in C

N of some fixed norm (e.g., unit norm). They further say that Φ has
the uniqueness-guaranteed statistical restricted isometry property (UStRIP) with parameters
ε and δ if, in addition to having the StRIP for ε and δ,

{x̂ k-sparse in C
N : Φx̂ = Φx} = {x}

with probability exceeding 1− δ.
The implication of Φ possessing the UStRIP on recovery of x from y = Φx is evident. A

further result in [8] provides a set of three conditions that are sufficient to establish that a
matrix Φ possesses the UStRIP. Specifically, suppose that

(p1) the rows of Φ are orthogonal and all the row sums are zero;
(p2) the columns of Φ form a group under “pointwise multiplication”; and
(p3) for all j ∈ {2, . . . , N}, |∑� φj(�)|2 ≤ n1−η.

Then if k < 1+ (N − 1)ε and η > 1/2, there exists a constant C such that, if n ≥ (C k logN
ε2

)
1
η ,

Φ possesses the UStRIP with parameters ε and

(2.5) δ = 2exp

(
− [ε− (k − 1)/(N − 1)]2nη

32k

)
.

The deterministic compressed sensing matrices proposed in [2, 25] and discussed in sec-
tions 2.3 and 2.4 below satisfy the UStRIP. In section 3.2 of this paper, the above criteria will
be used to show that certain related deterministic matrices also have the UStRIP.

2.3. Compressed sensing with chirps. Applebaum et al. [2] proposed and demonstrated
a deterministic compressed sensing scheme using matrices of discrete “chirps,” i.e., frequency-
modulated discrete sinusoids. Specifically, a discrete chirp of length n with chirp rate r and
base frequency m has the form

(2.6) φr,m(�) =
1√
n
e

2πi
n

r�2+ 2πi
n

m�, r,m, � ∈ Zn.

Note that the coefficient 1/
√
n is present in order for the vector to have a unit �2-norm. For a

fixed n, there are n2 possible pairs (r,m). The full chirp sensing matrix Φ thus has size n×n2
and can be written as

(2.7) Φchirp =
[
Ur1 Ur2 · · · Urt · · · Urn

]
, 1 ≤ t ≤ n.

Each Urt is an n×nmatrix with columns given by chirp signals having a fixed chirp rate rt with
base frequency m varying from 0 to n−1. The chirp rate r also varies from 0 to n−1. There-
fore, column j = m+ rn+ 1 of Φchirp is a discrete chirp with chirp rate r and base frequency
m. In [2], the suitability of Φchirp for compressed sensing was demonstrated empirically by
comparing the eigenvalues of the Grammians of matrices consisting of k columns chosen uni-
formly at random from the chirp matrix with those from Gaussian matrices. In [8], Φchirp

was shown to possess the UStRIP. To do so, each submatrix Urt was multiplied by a unit-

magnitude scalar e
2πi
n

rt to achieve the row-sum condition described in the preceding section.
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A key advantage of compressed sensing with chirp matrices is that it admits a fast recon-
struction algorithm whose complexity, O(kn2 log n) (see [2]) versus O(knN) for basis pursuit
with matching pursuit, depends only on the number of measurements n and not on the sig-
nal length N . This algorithm and a closely related one for reconstruction from compressed
measurements made with Reed–Muller matrices are discussed further in section 2.5.

2.4. Reed–Muller (RM) sensing matrix. In [25], Howard, Calderbank, and Searle intro-
duced the idea of deterministic compressed sensing using a matrix of real-valued second-order
RM codes [28]. In the construction summarized in [8], based on [17, 23], the set of such codes
with length 2p is parameterized by p × p binary symmetric matrices P and binary p-vectors
b ∈ Z

p
2. In terms of these parameters, a second-order RM code is given by

(2.8) φP,b(a) =
1√
2p
i(2b+Pa)Ta.

In this expression, a ∈ Z
p
2 indexes the 2

p components of the code φP,b. So, for given parameters
P and b, the code is a vector of length 2p. These vectors will serve as the columns of the
sensing matrix ΦRM. In addition, P is assumed to be zero on its main diagonal throughout this
paper. This implies that the components of these codes are all ±1, and the codes obtained
under this assumption are the same as would be obtained by generating complex codes of
length 2p−1 and applying the Gray map [23]. The compressed sensing matrix proposed in [25]
has the form

(2.9) ΦRM =
[
UP1 UP2 · · · UPt · · · UP

2p(p−1)/2

]
, 1 ≤ t ≤ 2p(p−1)/2,

where each UPt is a 2p × 2p orthogonal matrix whose columns are φPt,b with b going through
all binary p-vectors. In addition, each φP,b is multiplied with a phase factor (−1)wt(b), where
wt(b) is the Hamming weight of b, i.e., the number of ones in b. The extra phase factor ensures
that the total number of plus and minus signs of the inner products of any two columns are
the same. For convenience, P1 is chosen to be the zero matrix, and therefore, without the
phase factor, UP1 is a Hadamard matrix up to a scaling [24]. Consequently, multiplication by
UP1 is the Walsh–Hadamard transform which, up to a scaling, is its own inverse [24]. In this
paper, the scalings are chosen so that each column in ΦRM has unit norm.

In analogy with chirps, the vector b in the linear term of (2.8) and the matrix P in the
quadratic term may be regarded as the “frequency” and “chirp rate” of the code, respectively.
Useful insight about the structure of this collection of codes arises from considering the struc-
ture of the set of p × p binary symmetric matrices. First, there are 2p(p−1)/2 such matrices
with zero-diagonal, so the maximum size of the RM sensing matrix is 2p × 2p(p+1)/2. This is
substantially larger than the chirp matrix discussed in the previous section. For a given P ,
2p codes are obtained by varying b, and normalizing them to unit length yields the columns
of a 2p × 2p unitary matrix. The Delsarte–Goethals set DG(p, r) is the binary vector space
of p × p binary symmetric matrices with the property that the difference between any two
distinct matrices has rank greater than or equal to p−2r [23]. Evidently these sets are nested
as follows

DG(p, 0) ⊂ DG(p, 1) ⊂ · · · ⊂ DG

(
p,
p− 1

2

)
.
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Restricting the matrices P to reside in DG(p, 0) produces the Kerdock codes [26]. Two distinct
Kerdock codes, normalized to unit length, have inner product modulus that is either zero (if
they correspond to the same P ) or 1/

√
2p (if they correspond to distinct P ). More generally,

∣∣〈φP,b, φP ′,b′
〉∣∣ = {

1√
2q
, 2q times,

0, 2p − 2q times,
(2.10)

where q = rank(P −P ′). So, if the domain of P is DG(p, q), the set of possible inner product
modulus values for distinct normalized codes is {0, 2−p/2, . . . , 2−(p−2r)/2}. Allowing P to range
over all of DG(p, (p − 1)/2), (2.8) gives the full set of second-order RM codes.

Defining N = 2p(p+1)/2 and n = 2p, a k-sparse signal x ∈ C
N yields a measurement

y = ΦRMx ∈ C
n, which is the superposition of k RM functions

(2.11) y(a) = z1φP1,b1(a) + z2φP2,b2(a) + · · · + zkφPk,bk(a) =

k∑
t=1

ztφPt,bt(a).

In (2.11), zt are used instead of x in order to write only the nonzero terms, and Pt and bt may
individually repeat in the equation.

Comparisons between the condition numbers of the Grammians of randomly selected k-
column submatrices of the RM matrix and of Gaussian matrices, shown in [25], indicate
empirically that the average condition numbers are indistinguishable. This evidence supports
their utility as compressed sensing matrices, despite the observation that they almost certainly
do not have the RIP. In [8], compressed sensing matrices formed from RM codes were shown
to have the UStRIP.

2.5. Quadratic reconstruction algorithm. A key advantage of compressed sensing with
chirps and RM codes is that they admit fast deterministic reconstruction algorithms that
perform very well for highly sparse signals. These algorithms, which are closely related, are
summarized here to support discussion in section 3 about how their performance can be
improved when the signals to be reconstructed are less sparse.

To recover the sparse signal x from the chirp measurement vector y, Applebaum et al. [2]
used a fast Fourier transform (FFT) based algorithm to identify the (rt,mt) values correspond-
ing to the locations of the nonzero components of x. The total computational complexity of
identifying all k nonzero locations is O(kn2 log n). The magnitudes zt of the nonzero com-
ponents are found by solving an associated least-squares problem. In summary, their chirp
reconstruction algorithm repeats the following steps. Initially, let y0 = y be the measure-
ment; then after an iteration of the following algorithm, y0 will denote the residual of the
measurement.

Algorithm for signal reconstruction via chirp sensing matrix.
For t = 1, 2, 3, . . .
1. For each T �= 0, calculate wT = the peak location of FFT{y0(�)y0(�+ T )}. Find rt by

solving wT = 2rtT (mod n).

2. Let mt = the peak location of FFT
{
y0(�)e

− 2πirt�
2

n

}
.

3. Determine zl by minimizing ‖y0(�)−
∑t

l=1 zle
2πirl�

2

n
+

2πiml�

n ‖2.
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4. Define y0(�) = y0(�)−
∑t

l=1 zle
2πirl�

2

n
+

2πiml�

n . Terminate if ‖y0‖2 is sufficiently small.
Step 1 finds the chirp rate associated with the nonzero location having the largest coefficient.
Multiplication of a shifted replicate of y(� + T ) with its conjugate y(�) results in the chirp
rates appearing linearly rather than quadratically in the complex exponentials, and thus
chirp rates are mapped to frequency components by the FFT in step 1. Note that for step
1 to work properly, n has to be a prime number to uniquely determine rt. Moreover, all
T = 1, . . . , n − 1 are used to enhance robustness to noise and cross-term interference that is
problematic with less sparse data. Once the chirp rate of the largest peak is found, step 2
dechirps the measurement and then applies the FFT to find the frequency associated with
the peak. In step 3, the values of the nonzero coefficients are found by solving a least-
squares problem. Finally, the residual is computed before detecting the next largest peak.
According to [2], this algorithm is more efficient than matching pursuit with random matrices
for sufficiently sparse signals.

With the RM sensing matrix, the fast Walsh–Hadamard transform (FHT) is used to detect
the nonzero locations, (Pt, bt) pairs. The total computational complexity of this reconstruction
is O(kn(log n)2). Initially, let y0 = y be the residual measurement. In this case, the quadratic
reconstruction algorithm repeats the following steps until the residual y0 is small.

Algorithm for signal reconstruction via RM sensing matrix.
For t = 1, 2, 3, . . .
1. For each ei, i = 1, . . . , p, calculate wi = peak location of FHT{y0(a)y0(a + ei)}. The
ith column of Pt is the with element in Z

p
2.

2. Let bt = wth element in Z
p
2, where w = peak location of FHT

{
y0(a)φPt,0(a)

}
.

3. Determine zl by minimizing ‖y0(a)−
∑t

l=1 zlφPl,bl(a)‖2.
4. Define y0(a) = y0(a)−

∑j
l=1 ztφPl,bl(a). Terminate if ‖y0‖2 is sufficiently small.

The idea of this algorithm is similar to the one for chirps. The most intricate part is to
form the P matrix in the first step, which is a scalar in the case of the chirp matrix. For
reconstructing sparse signals, in terms of reconstruction speed and fidelity, this method is also
more efficient than matching pursuit with random matrices; see [8].

3. Approach. Despite the success for accurate reconstruction of very sparse one-dimension-
al (1D) signals with the algorithm described in section 2.5, application to real two-dimensional
(2D) images is impractical. This is because, in general, real images are not as sparse in any
transform domain as the 1D signals used in [2] or [25]. For instance, for good reconstruction
of a chirp signal of length N = 672 using n = 67 measurements, the sparsity is around k = 8.
The sparsity for successful reconstruction of an RM signal of length N = 255 with n = 210

measurements is around k = 20. If sparsity is much larger than considered in these examples,
then reconstruction is not guaranteed and the errors become very large.

A good approximation of a 256 × 256 pixel image is typically obtained by retaining the
largest 10% of the wavelet coefficients in some suitably chosen wavelet domain. In particular,
many medical images are well approximated by transform coding using 10–20% of their wavelet
coefficients but begin to show appreciable degradation as the percentage of coefficients retained
falls below these levels. However, a 256 × 256 image with 10% sparsity has 6,554 nonzero
coefficients, which is much larger than the sparsity considered for the 1D signals in [2] and
[25]. A rule of thumb (see [4, Theorem 1]) for the number of measurements in the standard
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compressed sensing using the Gaussian random matrices with �1 minimization is given by

(3.1) n > k log2(1 +N/k).

This rule guarantees successful reconstruction with high probability if the number of measure-
ments n is large compared to the sparsity and signal size. Using (3.1) in the above example,
at least 22672 measurements are needed for the correct reconstruction. The ratio N/n is 2.89,
and this implies that roughly only three chirp rates or P matrices are needed to form the
sensing matrix. Therefore, the efficiency of finding nonzero locations and their coefficients
using quadratic reconstruction algorithm is not fully utilized.

This section continues by describing the construction of sensing matrices adapted to the
2D case in section 3.1. Section 3.2 shows that these matrices satisfy the UStRIP. Section 3.3
explains the first new feature introduced in this paper: detection of the “bulk” of a signal in
the first step of the approximation. This step is termed “initial best approximation,” since
it precedes the iteration process entailed in the two algorithms summarized in section 2.5. It
is both fast and valuable to make an initial approximation that resembles a low-pass filtered
version of the signal. The second new feature introduced here detects several (largest) peaks
at once, thus significantly decreasing processing time. This is described in section 3.4. A
third innovation is in the least-squares step and is described in sections 3.5 and 3.6. Finally,
we demonstrate how these new features are combined in the numerical implementation and
compare the improvement of each step in section 3.7.

3.1. Construction of an effective sensing matrix for image reconstruction. As explained
above, due to the nature of sparsity of images and the rule of thumb (3.1), a few submatrices
of Φchirp or ΦRM can be used as the sensing matrix, with the ratio N/n = 2.89 for 10%-sparse
images. In practice, a larger ratio can be used, such as 4 for 10%-sparse images, which will
be analyzed later. Consequently, there is more freedom in the choice of the chirp rates, r or
P matrices, when constructing the sensing matrices.

Construction of the chirp sensing matrix. The inner product of any pair of distinct chirp
vectors is as follows:

∣∣〈φrt,mt , φrt′ ,mt′
〉∣∣ = {

1√
n

if rt �= rt′

0 if rt = rt′ and mt �= mt′ .
(3.2)

Therefore, a submatrix should use as few chirp rates as possible, and the choice of the chirp
rates can be arbitrary. For example, the submatrix can be

Φchirp =
[
Ur1 Ur2 Ur3 Ũr4

]
,(3.3)

where r1 = 0, r2 = 1, r3 = 2, r4 = 3, and Ũr4 denotes a submatrix of Ur4 so that the column
number of Φchirp matches the signal size. When only the first J submatrices Ur1 , . . . , UrJ are
used to form the sensing matrix, it follows from an argument given by Alltop [1, section IV]
that n need not necessarily be prime. Rather the crucial condition for unique identification of
the chirp rate rt in the reconstruction algorithm given in section 2.5 is that the smallest prime
divisor of n is greater than J . For instance, the sensing matrix for a 256 × 256 (N = 65536)
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image may be taken to be of size n×N = 16385 × 65536. Note that 16385 = 5× 29× 113 is
closest to and larger than 25%× 65536 = 16384, whose smallest prime divisor is greater than
4. Here, the 25% ratio comes from the fact that four chirp rates are used. In this example,
Ũr4 is of size 16385 × 16381 and can be Ur4 without the last four columns.

Construction of the RM sensing matrix. When forming a sensing matrix from submatrices
of the RM matrix, the choice of the submatrix cannot be arbitrary. The inner product of two
columns of ΦRM, one taken from UPt and another from UPt′ , t �= t′, is given by (2.10) with

q = rank(Pt − Pt′). If q = p, the inner product is always 1/
√
2p, which is smaller than the

inner product in other cases, q < p. Since the nonzero locations of the signal are unknown, it
is desirable that the inner products between any two columns are as small as possible, thus
making the columns of the resulting sensing matrix close to orthogonal. Taking q = p and
thus drawing P matrices only from DG(p, 0) (i.e., the Kerdock set) gives the best situation.
There are 2p−1 zero-diagonal elements in the Kerdock set. More details about the Kerdock
set can be found, for instance, in [7]. For instance, a sensing matrix can be constructed in the
form

ΦRM =
[
UP1 UP2 UP3 UP4

]
,(3.4)

where P1, P2, P3, and P4 are matrices from the Kerdock set. For example, the sensing matrix
for a 256 × 256 (N = 216) image with 10% sparsity is of size n × N = 214 × 216, which
means that only 25% of the signal entries are sampled. Note that for images with sparsity
much smaller than 10%, fewer measurements are needed, and therefore, more chirp rates or
P matrices can be used, since the ratio N/n becomes larger.

3.2. UStRIP. This section presents a proof that the chirp and RM submatrices in sec-
tion 3.1 satisfy the UStRIP. This is achieved by modifying the proof of Theorem 2.3 in [8],
which guarantees the UStRIP for a class of deterministic matrices. The proof of UStRIP for
these matrices proceeds in two steps. First, the expectation of ‖Φx‖2 is shown to be close to
‖x‖2. Then, a modification of McDiarmid’s inequality gives an upper bound on the proba-
bility that a multivariate function deviates within a fixed range from its expected value. The
random variables of the multivariate function in the modified McDiarmid’s inequality are dis-
tinct instead of independent because they are associated with the nonzero locations, which do
not repeat. In [8], the proof for deterministic matrices satisfying the sufficient condition of the
modified McDiarmid’s inequality relies only on property (p3) in section 2.2 and k � N , and
thus, can be extended to submatrices. For the first part, the following lemma is shown in [8].

Lemma 3.1. For π, a random permutation of N elements,

(3.5)

(
1− k − 1

N − 1

)
‖x‖22 ≤ Eπ

[‖Φx‖22] ≤ (
1 +

1

N − 1

)
‖x‖22.

The proof is based on (p1)–(p3) in section 2.2.
For the submatrices used in this paper, (p1) and (p2) are not satisfied, and thus, (3.5)

is not directly implied. Therefore, what is needed is a similar inequality for submatrices. As
discussed in [8], a submatrix constructed by randomly choosing columns from the full deter-
ministic matrix can be used in compressed sensing for signals with large sparsity. However,
this does not guarantee that the submatrix satisfies the UStRIP, and the associated recon-
struction algorithm may not be optimally efficient. Instead, the submatrices used in this paper
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are of the form (3.3) and (3.4), which use a few chirp rates r or P . Denote the submatrix as
Φ =

[
U1 −U2 U3 −U4

]
, where presence of the extra minus signs (or phase factors) ensures

that the row sums of Φ equal zero. Note that in the chirp case, U4 is in fact a submatrix
Ũ4, which can be chosen with only a small number of columns taken away from U4. Then,
the expectation Eπ[‖Φx‖22] based on this choice of the phase factors is shown in the following
lemma.

Lemma 3.2. For the submatrix defined above, Φ =
[
U1 −U2 U3 −U4

]
,

• ∑
� φj(�) = 0 for all 1 ≤ j ≤ n,

• Eπ

[∑
�

〈
φj(�), φj′(�)

〉]
= − 1√

n
n

N−1 for all j �= j′.
Proof. The row sum of U1 is zero for each row except for the first because all entries in

the first row are 1/
√
n by construction. Consequently, the row sums of Ut, for t = 2, 3, 4, are

also zero except for the first row, in which all entries are 1/
√
n as well. Therefore, with the

phase factors on U2 and U4, all row sums of Φ are equal to zero.
The next step is to find the expected inner product between any pair φj and φ′j with

j �= j′. For each column φj from U1, the collection formed by pointwise multiplication with the
complex conjugate of all other columns of Φ except with itself is Φ̃ =

[
Ũ1 −UX UY −UZ

]
for some chirp rates X,Y, and Z. Ũ1 is the same as U1 but without the first column. Even
though X,Y, and Z may not come from chirp rates of Φ, they do exist because of (p2).
Therefore, the row sum for each row of Φ̃ is −1/

√
n. Similarly, for each column from U2, U3,

or U4, the row sum of the collection of the inner products is also −1/
√
n. Therefore,

(3.6) Eπ

[∑
�

〈
φj(�), φj′(�)

〉]
=

N −1√
n

N(N − 1)
= − 1√

n

n

N − 1
,

because there are 4n = N columns in Φ and the total number of inner products is 4n(4n−1) =
N(N − 1).

Lemma 3.1 can now be proved using Lemma 3.2, and thus the following result holds for
submatrices.

Theorem 3.3. If a submatrix has the form Φ =
[
α1U1 α2U2 · · · αJUJ

]
, where α1, . . . ,

αJ are real- or complex-valued scalars with |αj | = 1 and α1 + · · · + αJ = 0, then Φ satisfies
(k, ε, δ)-UStRIP, with δ described in (2.5).

As noted earlier, in some cases considered in this paper the signal length is not an integer
multiple of n, and it is necessary to remove a small number s of columns from UJ to make a
sensing matrix of suitable size. The expected value of the component of a uniformly distributed
k-sparse unit N -vector falling in the s-dimensional subspace defined by the deleted columns
is less than s2/N � 1, so the StRIP condition (2.4) will still be satisfied in this case with
slightly less favorable ε.

3.3. Initial best approximation. This section proposes a new approach for detecting a
large portion of the nonzero locations in one step. The approach is based on the observation
that many important classes of images, including medical images, are low-pass in nature.
Consequently, most of their energy is captured by the coarse-scale wavelet coefficients (i.e., in
the upper-left region of a multiscale analysis diagram). This general structure can be exploited
without more explicit a priori knowledge of individual images. Although the idea is explained
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(d) wavelet coefficients (e) |U∗
P1
y|: approx. of x1 (f) |U∗
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y| in ascending order

Figure 1. (a) is the standard Shepp–Logan image, and (d) demonstrates that the energy of wavelet coeffi-
cients is concentrated in the upper-left region. (b) shows the absolute value of x1 entries, and (c) is the plot of
|x1| sorted in the ascending order. Similarly, (e) shows the magnitude of |U∗

P1
y|, and then (f) orders |U∗

P1
y| in

the ascending order. Comparing (c) and (f), it follows that |U∗
P1

y| approximates |x1| well.

here in the context of the RM sensing matrix, the same concept works for the chirp sensing
matrix as well. The measurements can be written as

Φx =
[
UP1 UP2 UP3 UP4

] ⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ = UP1x1 + UP2x2 + UP3x3 + UP4x4,
(3.7)

where x1, x2, x3, and x4 are vectors of the upper-left, lower-left, upper-right, and lower-right
coefficients, respectively. It is possible to estimate x1 by

(3.8) U∗
P1
y = x1 + U∗

P1
UP2x2 + U∗

P1
UP3x3 + U∗

P1
UP4x4,

where ∗ denotes the conjugate transpose. The last three terms are small because x2, x3, and
x4 are much sparser and smaller than x1, and, furthermore, U∗

P1
UP2 , U

∗
P1
UP3 , and U

∗
P1
UP4 are

small as well, as discussed in section 3.1. Therefore, U∗
P1
y ≈ x1. In the case when all nonzero

locations are in the upper-left region, i.e., x2, x3, and x4 are zero, U∗
P1
y is equal to x1, which

automatically completes the image reconstruction.
Figure 1 shows an example of this method with an RM sensing matrix, where (a) is the

Shepp–Logan phantom image of pixel resolution 256 × 256 and (d) shows its Haar wavelet
coefficients. From (b) and (e), it is evident that U∗

P1
y is a good approximation of x1 (with

added cross-terms in U∗
P1
y from the last three terms of (3.8)). The nonzero locations in x1

are then found by thresholding.
The threshold is determined by the following method. First, |U∗

P1
y| is sorted in ascending

order, as shown in Figure 1(f). Observe that the graph in (f) is a smooth version of the
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Figure 2. (a) is the initial MRI image; in (b) the blue solid curve represents the absolute values of the
wavelet coefficients of image (a) in the descending order. The red dashed curve approximates the blue curve
quite well and is (3.10) with s = 2, H = 400 N

216
, and Const = maximum absolute values of wavelet coefficients.

graph in (c). The threshold is picked as the critical point1 closest to the origin. In (f), such
a critical point is around 14000. Denoting the detected locations by (Pl, bl), l = 1, . . . , t, the
magnitudes zl can be well estimated by solving the least-squares problem, minz ‖Az − y‖,
where A is the matrix whose columns consist of φPl,bl and z = [z1, . . . , zt]

T . The solution is
zsol = (A∗A)−1A∗y. Since Pl = P1 in the initial step and UP1 is orthogonal, the solution is
z = A∗y. This is the initial best approximation.

This method entails low computational cost, since it requires only one length-n FFT or
FHT and sorting of one n-vector. Empirically, the initial best approximation step already
gives small reconstruction error, around −18 dB, where the error is defined as

(3.9) Error(dB) = 10 log10

[ ||xactual − xreconstructed||2
||xactual||2

]
.

Note that the negative of the above error is known as the signal-to-noise ratio.
Error estimation. To estimate the error of the initial approximation method, the coeffi-

cients of x are arranged in decreasing order, |x(1)| ≥ |x(2)| ≥ · · · ≥ |x(N)|. Assume that the
wavelet coefficients have the following decay property (this is consistent, for example, with
[20, 12]):

(3.10) |x(n)| ≈ Const · (n +H)−s

for some s ≥ 1 and H > 0. Figure 2 shows and example of an MRI image and its wavelet
coefficients in the decreasing order, which fit well with (3.10). The approximation of ‖x‖ is
given by

(3.11) ‖x‖2 =

∥∥∥∥∥
N∑

n=1

x(n)φ(n)

∥∥∥∥∥
2

=

√√√√∣∣∣∣∣
N∑

n=1

x(n)φ(n)

∣∣∣∣∣
2

≈
√√√√ N∑

n=1

∣∣x(n)∣∣2 ≈ Const·
√√√√ N∑

n=1

(n+H)−2s.

1In the continuous case it would be exactly the critical point, i.e., where the derivative does not exist;
however, this is a discrete setting, and so the term “critical point” is used loosely.
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If the largest M coefficients are detected, the error between the initial best approximation
xM =

∑M
n=1 x(n)φ(n) and the actual x is

(3.12) ‖xM − x‖2 =
∥∥∥∥∥

N∑
n=M+1

xnφ(n)

∥∥∥∥∥
2

≈ Const ·
√√√√ N∑

n=M+1

(n+H)−2s.

Therefore, the error of this initial approximation method is about

(3.13) Errorinit ≈ 10 log10

[∑N
n=M+1(n+H)−2s∑N
n=1(n +H)−2s

]
.

For example, let N be the image size and suppose that the largest 2% coefficients are detected,
i.e.,M = 2% of N . The wavelet coefficients of several images are described by the decay (3.10)
with s = 2 and H = 400 N

216
. Then for N = 2562, 5122, and 10242 the calculation of (3.13)

gives the initial error
Errorinit ≈ −18.9 dB.

3.4. Detecting nonzero locations with DCFT and DCHT. The discrete chirp Fourier
transform (DCFT) of an n-point signal x, defined in [35], can be written as

(3.14) Xc(r,m) =
1√
n

n−1∑
�=0

x(�)(Wn)
r�2+m�,

whereWn = e−2πi/n. The discrete chirp Hadamard transform (DCHT) is defined analogously;
and for brevity, only the case of DCFT is shown in this section. In the above definition, r and
m are the chirp rate and frequency, respectively. For a fixed rt,

(3.15) Xc(rt,m) =
1√
n

n−1∑
�=0

x(�)(Wn)
rt�2+m�.

Defining

(3.16) xrt(�) = x(�)(Wn)
rt�2 ,

yields

(3.17) Xc(rt,m) = DFT
n

{
xrt(�)

}
, t = 1, 2, 3, 4.

Note that only four n-point DFTs (discrete Fourier transform) need to be evaluated, since
only four chirp rates are used. Of the 4n DCFT coefficients computed, the ones with largest
absolute values are chosen. The corresponding (r,m) pairs from the DCFT plane (see Figure
3) are used to recover the chirp sensing matrix columns. In this setting, applying the DCFT to
detect nonzero locations is the same as dechirping with all four chirp rates and then applying
the DFT:

(3.18) w(rt, �) = DFT
n

{
y0(�)Φrt,0(�)

}
, t = 1, 2, 3, 4.

The first d largest coefficients |w(rt, �)| are then selected, giving d pairs (rt, �). In the experi-
ments presented in section 4.2, d ≈ 100.
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Figure 3. DCFT plane: chirp rate rt versus chirp frequency. Here, only four rates in Xc from (3.17) are
relevant: r1 = 0, r2 = 200, r3 = 400, r4 = 800; the height here is |Xc|.

This selection procedure can be visualized as follows. The DCFT plane is an n× n plane
for an n-point signal. For the Shepp–Logan phantom image of 64 × 64 size and 1% sparsity
the DCFT plane is shown in Figure 3. The chirp rate axis has only four points per frequency
cycle due to the selection of only four chirp matrices (in the example, the rates are 0, 400,
600, 800), while the chirp frequency axis is dense due to the true nonzero coefficients from the
sparse signal as well as from the side-lobes introduced during the dechirping step.

3.5. Updated pseudoinverse solution. The third step finds the values zt by solving the
linear least-squares problem

(3.19) min
z

‖Az − y‖ ,

where A is a submatrix of the sensing matrix and z = [z1, . . . , zt]
T is a vector. Two methods

are proposed for this step. This section describes the first method, while the second method
is discussed in the next subsection.

Note that the matrix A in the current step can be expressed as A = [Ã c], where Ã is the
matrix in the previous least-squares problem and c is the newly found column. To solve these
least-squares problems without treating each problem (iteration) independently, it is possible
to use an updated pseudoinverse solution method whose computation is based on previous
calculations. The pseudoinverse solution of (3.19) is

(3.20) zsol = (A∗A)−1A∗y.

The inverse of

(3.21) A∗A =

[
Ã∗Ã Ã∗c
c∗Ã c∗c

]
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can be computed efficiently by the Schur–Banachiewicz blockwise inversion formula [6]:[
D E
F G

]−1

=

[
D−1 +D−1EV FD−1 −D−1EV

−V FD−1 V

]
,(3.22)

where V = (G−FD−1E)−1. Since D−1 = (Ã∗Ã)−1 is known from the previous iteration and
the size of V = (G − FD−1E)−1 is small, the calculation is very efficient. The calculation of
A∗y can be done using previous steps by

(3.23) A∗y =

[
Ã∗y
c∗y

]
,

where the size of c is much smaller than the size of A.

3.6. Fast methods for DCFT and DCHT with an arbitrary subset of columns. The
second method for solving the least-squares problem (3.19) is by the LSQR algorithm of
Paige and Saunders [31], replacing the above pseudoinverse solution approach. The LSQR
algorithm is an efficient iterative method for solving the least-squares problem if the matrix A
is sparse or the matrix-vector multiplications by A and A∗ can be done efficiently. Therefore,
this section begins by showing how to efficiently apply Φ and Φ∗ to length-N and length-n
vectors, respectively, without directly calculating matrix-vector products. Subsequently, an
efficient method for multiplying A and A∗ is described, where A is an arbitrary submatrix of
Φ, formed by concatenating a set of columns of Φ.

First, write the matrix multiplication Φx as the blockwise matrix multiplications:

Φx =
[
U1 U2 U3 U4

] ⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ .(3.24)

Recall that U1 is the discrete inverse Fourier or Walsh–Hadamard transform, up to a scaling.
A key step here is to express Ut for t �= 1 as the product of a diagonal matrix Dvt with diagonal
vt = φrt,0 or vt = φPt,0 and matrix U1 as follows:

(3.25) Ut = DvtU1.

Then,

(3.26) (DvtU1)xt = Dvt (U1xt) .

Therefore, instead of directly multiplying the matrix Ut with xt, one can first apply the inverse
fast Fourier (or Walsh–Hadamard) transform to xt and then carry out pointwise vector-vector
multiplication of vt and U1xt. So, Φx in (3.24) can be calculated with only four FFTs or
FHTs.

The calculation of Az can be efficiently carried out by a slight modification of the above
method for Φx. Consider a length-N zero vector xz. The coefficients of z are inserted at
those locations in xz that correspond to the columns of Φ that make up the matrix A. Then,
Az = Φxz can be efficiently calculated as described above.
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For efficient calculation of Φ∗y, one can start by expressing it as a blockwise matrix
multiplication:

Φ∗y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

U∗
1

U∗
2

U∗
3

U∗
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
y
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

U∗
1 y

U∗
2 y

U∗
3 y

U∗
4 y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(3.27)

Therefore, Φ∗y can be obtained by concatenating four vectors U∗
t y, for t = 1, 2, 3, 4, into a

long vector. The matrix U∗
1 is the Fourier matrix or the Walsh–Hadamard matrix. Each U∗

t

can be written as the product of U∗
1 and Dvt , where Dvt is a diagonal matrix with diagonal vt:

(3.28) U∗
t = U∗

1Dvt .

Using this expression for U∗
t y, the calculation can be carried out by applying the fast Fourier

or Walsh–Hadamard transform after the pointwise vector-vector multiplication of vt and y:

(3.29) U∗
t y = (U∗

1Dvt) y = U∗
1 (Dvty) .

Finally, the calculation of A∗y can be efficiently carried out by a slight modification of the
method for Φ∗y. First, calculate Φ∗y as above and get a length-N vector, say x. Then, from
x, choose only the positions that have corresponding columns in A to form a length-j vector,
xA. This is because A

∗ is a submatrix of Φ∗ with selected rows from Φ∗. Therefore, A∗y can
also be efficiently calculated.

Using these efficient methods, the least-squares problem (3.19) may be solved via an LSQR
algorithm instead of the updated pseudoinverse solutions method of section 3.5.

3.7. Three versions of the reconstruction algorithm. This section describes how the
features introduced in the preceding sections are incorporated into the image reconstruction
algorithm. The reconstruction algorithm is built up step-by-step with the most efficient recon-
struction (called version 3, or v3), with the goal of comparing how each modification improves
the reconstruction.

Version 1 (v1) consists of three iterative steps: detecting the nonzero locations, finding
the corresponding coefficients, and getting the residuals. These steps are repeated until the
residual is sufficiently small. Specifically, nonzero location detection is done using DCFT or
DCHT as described in section 3.4 instead of using the shift-and-multiply method and then
applying FFT or FHT [2, 25]. Since only a few chirp rates are used, multiple nonzero locations
can be found in each iteration of the algorithm. Then, v1 uses the updated least-squares
method with the pseudoinverse solution, as described in section 3.5, to find the coefficients
without treating each iteration independently. This method was applied with the chirp sensing
matrix in [30].

In version 2 (v2), the initial approximation step explained in section 3.3 is added before
the iterative steps to detect a significant number of the nonzero coefficients. This was applied
with the RM matrix in [29]. The additional approximation step speeds up the algorithm, and,
more importantly, the reconstruction fidelity is improved when the image sparsity is increased.
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Table 2
Three versions of algorithms.

Step 0: approx. Step 1: detection Step 2: least-squares

v1 no DCFT or DCHT sect. 3.4 Updated pseudoinverse solutions sect. 3.5

v2 sect. 3.3 DCFT or DCHT sect. 3.4 Updated pseudoinverse solutions sect. 3.5

v3 sect. 3.3 DCFT or DCHT sect. 3.4 LSQR with fast DCFT or DCHT sect. 3.6

Note that, as discussed in section 3.3, x2, x3, and x4 are assumed to be much sparser than x1
when the initial approximation is used.

The v3 algorithm also incorporates the initial approximation step. The improvement
comes largely from the reconstruction time and storage in the second iterative step. Now the
coefficients are found by using the fast DCFT or DCHT method introduced in section 3.6
along with the LSQR algorithm for solving the least-squares problem.

The comparison is given in Table 2 with the following steps in each version:
• Step 0: approximation of the solution,
• Step 1: detection of nonzero locations,
• Step 2: finding the coefficients using least-squares,
• Step 3: getting the residual and repeating steps 1 and 2 if the residual is not sufficiently

small.
Algorithm v3.
Input: y,Φ =

[
U1 −U2 U3 −U4

]
Output: z̃
0. Approximation: Perform hard-thresholding U∗

1 y to obtain a set of nonzero locations,
denoted by Γ. Let A = U1|Γ be a submatrix of U1 restricted on the set Γ. Then, the
initial approximation is z̃ = A∗y, and the residual is obtained by y0 = y −Az̃.

1. Detection: From w(t, �) = DFT
n

{y0(�)vt(�)}, t = 1, 2, 3, 4, where DFT is DHT in the

RM case and vt is the first column of Ut, update Γ = Γ∪ {locations associated with d
largest |w(t, �)|}. Let A = Φ|Γ.

2. Least-squares: z̃ = argminz ‖y −Az‖2.
3. Define y0 = y −Az̃. Repeat steps 1–3 until ‖y0‖2 is sufficiently small.

4. Performance analysis and experiments. In this section, the performance of the ap-
proach described in the preceding section is analyzed in terms of computational complexity
and memory use. Results from a number of experiments involving both natural scene and
medical images are also summarized.

4.1. Computational complexity and memory. The chirp quadratic reconstruction algo-
rithm (QRA) detects the nonzero locations one-by-one with n− 1 length-n FFTs. Therefore,
the total computational complexity for Step 1 is O(kn2 log n). For RM QRA, p (= log n)
length-n FHTs are used for nonzero location detection. The computational complexity is thus
O(kn(log n)2). For QRA with both chirp and RM, Step 2 uses a pseudoinverse method to
solve the least-squares problem. Specifically, since the matrix A is of size n× t, n > t, this is
usually done with the QR factorization. Therefore, the overall computational complexity is
O(
∑k

t=1 t
3) = O(k4). Consequently, if the sparsity k is significantly small (i.e., k � n� N),

this method is very efficient. However, when k is not so small, which is usually the case
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Table 3
Computational complexity of each step for different versions of the algorithm.

Chirp QRA RM QRA Chirp/RM v1/v2 Chirp/RM v3

Complexity
Step 1 O (

kn2 log n
) O (

kn(log n)2
) O (

1
d
kn log n

) O (
1
d
kn log n

)

Step 2 O (
k4

) O (
k4

) O (
nk2

) O (τkn log n)

Memory Step 2 O (nk) O (nk) O (
k2

) O (k)

(a) 256 × 256 (b) 256 × 256 (c) 512 × 512 (d) 512 × 512 (e) 1024 × 1024

(f) 14% (g) 10% (h) 7% (i) 5% (j) 3%

Figure 4. Top row shows original images. Bottom row shows the sparsified images.

for real images, it becomes inefficient. For chirp and RM algorithms v1, v2, and v3, Step
1 uses only a few (for example, 4) length-n FFTs or FHTs to detect d nonzero locations
in one iteration. Therefore, the total computational complexity is O(1dkn log n). In all the
experiments presented here, d = 100. For chirp and RM, in both v1 and v2, Step 2 uses the
updated pseudoinverse method to find the nonzero coefficients, wherein multiplications with
the matrix A of size n × t are carried out. Therefore, the overall computational complexity
is O(

∑k
t=1 nt) = O(nk2). The memory is O(k2) because (A∗A)−1 needs to be stored and has

size t× t. In Step 2 of chirp and RM for v3, because of the use of the fast DCFT or DCHT
algorithms that need a few length-n FFTs or FHTs, the total computational complexity is
O(τkn log n), where τ is the iteration number of convergence. The memory cost in this case is
only O(k) because only the t chirp-frequency pairs related to the matrix A need to be stored.
The comparison is given in Table 3.

4.2. Experimental results and comparisons. For the experiments, each original image
was sparsified by computing its Haar wavelet transform and then retaining a predetermined
fraction of its wavelet coefficients, keeping the largest coefficients and setting the rest to zero.
The image data were compressively sensed (measured) with chirp, RM, and noiselet matrices of
the same size (for chirp, the closest prime number) and then reconstructed by their respective
algorithms. Figure 4 shows the original images with sizes ranging from 256×256 to 1024×1024
and their corresponding sparsified images with the predetermined sparsity.
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Table 4
Reconstruction errors and times from experiments with all three versions of chirp compressed sensing.

Chirp v1 Chirp v2 Chirp v3

error time error time error time

Cameraman, 256 × 256, 14% −239 dB 7.3 h −249 dB 12 h −109 dB 28 s

Knee, 256× 256, 10% −245 dB 152 m −260 dB 80 m −119 dB 7 s

Table 5
Reconstruction errors and times from experiments with all three versions of RM compressed sensing.

RM v1 RM v2 RM v3

error time error time error time

Cameraman, 256 × 256, 14% failed - failed - −43.7 dB 33 s

Knee, 256× 256, 10% failed - −284 dB 31 m −108 dB 18 s

Table 4 shows the reconstruction errors and times for all three versions of the chirp re-
construction algorithm. Note that the experiments were done in MATLAB and the codes are
not optimized, so run-time comparisons should be interpreted accordingly. For reconstruction
fidelity, v2 is slightly better than v1. Table 5 shows the reconstruction errors and times for
all three versions of the RM reconstruction algorithm. For reconstruction fidelity, v2 is much
better than v1 because the initial approximation step is able to correctly detect a large num-
ber of nonzero locations. Among all experiments performed (including many not shown in
the tables), the highest sparsity level for which chirp v2 and RM v2 were able to accurately
reconstruct is larger than that for chirp v1 and RM v1. In terms of reconstruction time, v3 is
better than v2 because v3 uses the fast DCFT or DCHT method to find the coefficients. In
the table, s, m, and h stand for seconds, minutes, and hours, respectively. The reconstruction
results by chirp v3 and RM v3 are better than those of the other versions. The error is about
−110 dB, which is larger than the error for v2 because v2 directly computes the closed-form
solution of the least-squares problem and v3 approaches the solution iteratively. The recon-
structed images by chirp v1, v2, and v3 in Table 4 are shown in Figure 5, in which all the
reconstructed images look essentially identical to the reference images.

Table 6 and Figure 6 show experimental results obtained with chirp v3 and RM v3 al-
gorithms, with a comparison to the results of using random noiselet measurements with �1
minimization. A real-valued noiselet transform is used (fast code provided by Romberg) and
YALL1 [36] is used for �1. Note that Candès and Romberg have used noiselets for compressed
sensing in [10]. The measurements are again operated on the wavelet domain of each spar-
sified image. The reference images with predetermined sparsities are shown in column (a).
The reconstructed images by noiselets, chirp, and RM are shown in columns (b), (c), and (d),
respectively. The results of column (c) are by chirp v3 algorithm and of (d) are by RM v3 al-
gorithm. Both chirp v3 and RM v3 provide better reconstruction fidelity than reconstruction
using random noiselet measurements.

Finally, Table 7 shows experimental results using the original unsparsified images. The
reconstruction errors obtained with the chirp v3 and RM v3 algorithms are better than those
obtained by using random noiselet measurements. This supports the practicality of the pro-
posed methods directly on real images.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

950 K. NI, S. DATTA, P. MAHANTI, S. ROUDENKO, AND D. COCHRAN

(a) reference (b) chirp v1 (c) chirp v2 (d) chirp v3

Figure 5. Reconstructed images with chirp v1, v2, and v3 look merely identical to the (sparsified) reference
images.

Table 6
Reconstruction error using noiselets, chirp v3, and RM v3 algorithms.

Image n/N Noiselets Chirp v3 RM v3
size, sparsity

Brain 25% −25.2 dB −123 dB −119 dB
512× 512, 7%

Vessel 25% −38.9 dB −129 dB −125 dB
512× 512, 5%

Vessel 12.5% −10.1 dB −49.9 dB −10.6 dB
512× 512, 5%

Man 6.25% −14.5 dB −112 dB −109 dB
1024× 1024, 2.38%

5. Discussion and conclusions. This paper describes an approach to improving the utility
of compressed sensing using deterministic matrices consisting of chirps or second-order RM
codes. Specifically, we discuss a reconstruction algorithm and some variations that extend
the utility of the algorithms described in [2] and [25] to less sparse signals and, in particular,
images. Several examples illustrating the performance of this approach with images with
varying modest degrees of sparsity and having different characteristics in other respects are
also presented.

We believe it is likely possible to make further improvements in both reconstruction effi-
ciency and accuracy using chirps and RM codes in compressed sensing of signals having limited
sparsity by improving the process of peak detection entailed in identifying the locations of
nonzero values in the sparse signal.

Although they are designed for compatibility with the reconstruction approach discussed
in this paper, it would be possible to use the sampling matrices constructed here with other
reconstruction methods (e.g., directly with basis pursuit). We have not looked into this either
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(a) reference (b) noiselets (c) chirp v3 (d) RM v3

Figure 6. Reconstructed images with noiselets, chirp, and RM corresponding to Table 6.

Table 7
Reconstruction error using noiselets, chirp v3, and RM v3 algorithms. The images are not sparsified.

Image n/N Noiselets Chirp v3 RM v3
size

Brain 25% −23.4 dB −28.4 dB −25.7 dB
512× 512

Vessel 25% −12.0 dB −14.1 dB −15.4 dB
512× 512

Man 25% −20.0 dB −23.2 dB −22.6 dB
1024× 1024
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analytically or experimentally, though it would be of interest to see how well they perform
compared to random matrices using other reconstruction schemes.

Additionally, it is noted that the method used here, although applied to images, is essen-
tially one-dimensional. Ongoing work is investigation of more natural formulations for multi-
dimensional signals. Finally, the set of RM codes is naturally partitioned into a hierarchy of
subfamilies, beginning with the Kerdock codes that have very good correlation properties and
continuing through Delsarte–Goethals families in which the inner product magnitudes between
codes increase according to orderly bounds. It may be possible to exploit this structure in the
compressed sensing process, particularly when some a priori information is available about the
distribution of the locations of the nonzero components. This is often the case with images,
many classes of which are known to possess a low-pass structure in addition to being compress-
ible in certain bases (e.g., wavelets). They admit approximations that not only are somewhat
sparse, but in which the locations of the nonzero coefficients are not uniformly distributed.
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